APPENDIX B
PATTERNS OF PROOF
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PROOF BY INDUCTION

ALL SIX STEPS MUST BE PRESENT

(1) CHECK the first value

(2) SUPPOSE result is true for n

(3) CONSIDER the n +1 case

(4) RELATE it to the n case

(5) USE induction hypothesis to prove the n+1 case

(6) CONCLUDE proof by appealing to the
induction principle

EXAMPLE: Prove Tn = n(n — 3)is even for all n > 3.

(1) Ifn=3, Tn =3 x 0 =0 which is even.
Hence the statement holds for n = 3.

(2) Suppose the statement holds for n
I.e. suppose Ty is even

(3) Th+1 = (n+1)(n+1-3) = (n+1)(n-2) =n*—n -2

(4) =(n?-3n)+2n—-2=Tp+2(n -1)

(5) Since Tp is even (by assumption)and 2(n —1) is
even, then Tp+1 IS even.

(6) Hence by induction, Tn is even for all n > 3.
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