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11. INTEGERS MOD m 
 

§ 11.1. Days of the Week 
 When we do calculations with days of the week we 

use a system that’s called the system of integers modulo 

7, or ℤ7 for short. This is a system in which we throw away 

multiples of 7 (whole weeks) and only keep remainders 

after division by 7. 

 Today is Thursday. 

What day of the week will it 

be in 8 days time? Clearly it 

will be a Friday. We do not 

count forward 8 days. We 

simply recognise that in 7 

days time it will still be a 

Thursday, so 8 days will 

bring us to a Friday. 

 In 72 days time it will be a Saturday. We can ignore 

70 of the 72 days because they represent so many whole 

weeks. We simply count 2 days forward from today. 

 What day of the week will it be in 1000 days time?  

Dividing 1000 by 7 we get a quotient of 142 with a 

remainder of 6. The quotient is unimportant, only the 

remainder. So if we were doing the calculation in our 

head, and we were feeling particularly lazy, we might say 

something like this. “Throw away 700 to get 300.  Now 

discard 280, leaving 20. Take off 14 and this leaves us 

with 6. We simply subtract suitable multiples of 7 

repeatedly until we get an answer in the range 0 to 6.” 
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 Having discovered that it will be the same day of 

the week in 6 days time as it will be in 1000, what then? 

Would we count forward 6 days from today? Not if we 

are particularly lazy. We would realise that in 6 days time 

it will be the same day of week as it was yesterday. If 

today is Thursday our answer is Wednesday. In the 

system of days of the week 6 days forward is the same as 

one day back. 

 The mathematical system that underlies all this is 

the system ℤ7. It consists of 7 numbers 0, 1, 2, 3, 4, 5 and 

6. These numbers may look like integers but they are not. 

For if we add the integers 5 and 4 we get 9, but if we add 

the numbers 5 and 4 in this ℤ7 system we get 2. Five days 

from now plus a further 4 days brings us to the same day 

of the week as it will be in 2 days time. 

 You could take the view that 5 + 4 is 9 but in the 

system ℤ7 the symbol 9 is just another name for 2 since 

they differ by 7. The important thing, however, is that we 

quote our final answer using the standard names for these 

numbers, that is one of the symbols 0, 1, 2, 3, 4, 5 or 6. 

 To avoid confusing calculations in the mod 7 

system with those for ordinary integers we often add a 

note to remind us that our result is valid for the mod 7 

system. So we might write 5 + 4  2(mod 7). However if 

we’re doing a lot of calculations in ℤ7 we can simply 

announce that we’re working in that system and simply 

write 5 + 4 = 2. 

 The system ℤ7 is. in many ways. a miniature 

version of the system of integers. We can add and 
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multiply any two numbers in the system and our answer 

will be one of the 7 numbers. 

  

§ 11.2. The system ℤ7 
 We can describe the workings of the system ℤ7 by 

setting out its addition and multiplication tables. 

 

+ 0 1 2 3 4 5 6 

0 0 1 2 3 4 5 6 

1 1 2 3 4 5 6 0 

2 2 3 4 5 6 0 1 

3 3 4 5 6 0 1 2 

4 4 5 6 0 1 2 3 

5 5 6 0 1 2 3 4 

6 6 0 1 2 3 4 5 

 

 0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 

2 0 2 4 6 1 3 5 

3 0 3 6 2 5 1 4 

4 0 4 1 5 2 6 3 

5 0 5 3 1 6 4 2 

6 0 6 5 4 3 2 1 

Examine these tables and look for patterns. 

 Note that the entries in the body of each table are 

all in the set {0, 1, 2, 3, 4, 5, 6}. We describe this by 

saying that: 
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ℤ7 is closed under addition and multiplication. 

 

 Secondly both tables are symmetric about the (top-

left to bottom-right) diagonal. We describe this by saying 

that addition and multiplication in ℤ7 are commutative. 

That is: 

 

For all numbers x and y in the system ℤ7: 

x + y = y + x and xy = yx. 

 

 Note that each table has a row that’s identical with 

the numbers above the table. This reflects the fact that 

there are numbers in the system that have no effect when 

they’re added to or multiplied by any number. These 

numbers are called the “identities”. The additive identity 

is the number 0 and the multiplicative identity is the 

number 1. The special properties of these numbers are 

described by the statements: 

 

For any x in the system ℤ7: 

0 + x = x = x + 0 and 1x = x = x1. 

 

 Something that you wouldn't notice just by casual 

observation, are the associative laws: 

For any x, y and z in the system ℤ7: 

x + (y + z) = (x + y) + z and x(yz) = (xy)z. 
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 In the addition table every one of the 7 numbers 

appears in each row and column. This allows subtraction 

to be possible. What is 2 − 5? It should mean “that number 

which when added to 5 gives 2”. We look along the 5 row 

until we reach a ‘2’. The fact that every number appears 

in every row and column guarantees that we'll find a ‘2’. 

There it is in the ‘4’ column. So 5 + 4 = 2 and hence 2 − 

5 = 4. 

 In particular the number 0 appears in each row and 

column. That is: 

 

For every number x there is a number y such that: 

x + y = 0 = y + x. 

 

 We denote this additive inverse of x by  y = −x.  The 

following table gives the additive inverses of all the 

elements of ℤ7. 

 

x 0 1 2 3 4 5 6 

−x 0 6 5 4 3 2 1 

 

 When it comes to multiplication things are just a 

little different. The first row and column consist entirely 

of 0's. But if we focus our attention on the non-zero part 

we get every non-zero number appearing exactly once in 

each row and column. This allows us to divide in this 

system, provided we don't want to divide by zero. 

 What is 3/5 in ℤ7? In other words, what number 

when multiplied by 5 gives 3? We look along the ‘5’ row 
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until we find a ‘3’. We’re guaranteed to find a 3 because 

every number occurs exactly once in the 5 row. There it 

is, in the ‘2’ column. So 5.2 = 3 and hence 3/5 = 2. 

 In particular the number 1 appears in each row and 

column (apart from the 0 one). That is: 

 

For every non-zero number x there is a number y 

such that xy = 1 = yx. 

 

We denote this multiplicative inverse of x by y = x−1. The 

following table gives the multiplicative inverses of all the 

non-zero elements of ℤ7. 

 

x 1 2 3 4 5 6 

x−1 1 4 5 2 3 6 

 

 The advantage of having only a finite number of 

numbers in our mini number system, ℤ7, is that we can 

describe any function from ℤ7 to ℤ7 by means of a table 

of values. Above we have the table for f (x) = x−1. What 

about some other powers? 

  

x 1 2 3 4 5 6 

x2 1 4 2 2 4 1 

x3 1 1 6 1 6 6 

x4 1 2 4 4 2 1 

x5 1 4 5 2 3 6 
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 Notice that we don’t need a calculator to complete 

this table. We simply multiply each row by the first to get 

the next. So there is no need to compute 55, for example. 

We simply multiply 54 by 5, that is, 2 times 5 which, mod 

7, is 3. 

 Now something rather remarkable happens when 

we compute the next power. 

x 1 2 3 4 5 6 

x6 1 1 1 1 1 1 

 

So x6  1 (mod 7) for all non-zero x  ℤ7. You may 

wonder why we would ever want to raise days of the week 

to powers. The answer is that we wouldn’t. Doing 

calculations with the calendar is just one of the more 

elementary applications of these finite mathematical 

systems. A much more important application is to the 

science of cryptography, the science of secret codes. 

Transmitting information securely is no longer only of 

interest to secret agents and the military. It’s of vital 

interest to business. But of course 7 is much too small a 

number for these purposes. What we have done for 7 can 

be done for any modulus. 

 

§ 11.3. The system ℤm 
 For any positive integer, m, the system of integers 

mod m is the set {0, 1, 2, ... , m−1} with addition and 

multiplication carried out modulo m, that is the result of 

adding or multiplying two of these elements is adjusted to 

give one of these m numbers by subtracting a suitable 
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multiple of m. More formally we add or multiply in the 

usual way but then take the remainder on dividing by m. 

 The smallest of these is ℤ1 but as this contains just 

one number 0 with 0 + 0 = 0 and 0.0 = 0 it is not of much 

use. The smallest useful example is ℤ2, the integers 

modulo 2. Here we have just two numbers 0 and 1. They 

combine just as they normally do in integer arithmetic 

with one exception: 1 + 1 = 0. Here are the full addition 

and multiplication tables for ℤ2. 

+ 0 1   0 1 

0 0 1  0 0 0 

1 1 0  1 0 1 

 

 Incidentally, notice that these tables have the same 

patterns as the addition and multiplication tables for the 

entities ‘odd’ and ‘even’. If you consider 0 as representing 

‘even’ and 1 representing “odd” then 1 + 1 = 0 is simply 

recording the fact that “odd plus odd is even”. 

  No wonder ℤ2 is sometimes called “dunces 

arithmetic”. Apart from having very little to learn by way 

of one's tables, a dunce could get 50% of the answers in 

an arithmetic test correct just by guessing! 

 But surely ℤ2 is far too simple a mathematical 

system to be of any practical use. For cryptography it is, 

but there’s another sort of code – the error-correcting 

code. Here the goal is not to conceal the message but to 

compensate for a small number of errors that can creep in 

when a message is transmitted electronically. Here ℤ2 is 
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admirably suited because every message transmitted 

electronically is just a long string of 0’s and 1’s. 

 Let’s try ℤ8, the system of integers modulo 8. Here 

are its addition and multiplication tables. 

+ 0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 

1 1 2 3 4 5 5 7 0 

2 2 3 4 5 5 7 0 1 

3 3 4 5 6 7 0 1 2 

4 4 5 6 7 0 1 2 3 

5 5 6 7 0 1 2 3 4 

6 6 7 0 1 2 3 4 5 

7 7 0 1 2 3 4 5 6 
 

 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 

2 0 2 4 6 0 2 4 6 

3 0 3 6 1 4 7 2 5 

4 0 4 0 4 0 4 0 4 

5 0 5 2 7 4 1 6 3 

6 0 6 4 2 0 6 4 2 

7 0 7 6 5 4 3 2 1 

 

 Notice that the above addition table is very similar 

to the one for ℤ7. Each row is identical to the one above 

but moved one place to the left, with the number that falls 

off the left-hand edge ‘wrapping around’ to the right-hand 

end. But with multiplication the pattern is very different. 
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With ℤ7 the non-zero entries were uniformly distributed 

with each one appearing in every row and column in the 

non-zero part of the table. But with ℤ8 2’s, 4’s and 6’s 

occur more frequently than 1’s, 3’s, 5’s and 7’s and 0’s 

creep into the non-zero part of the table (for example  2  

4 = 0 even though neither 2 nor 4 is zero). 

 

 The system ℤ7 behaves much more like the 

arithmetic we're used to than ℤ8. In ℤ7 the cancellation 

law: 

 

If xy = 0 then x = 0 or y = 0 

 

is valid. In ℤ8 it’s not. 

 

 The lack of the cancellation law in ℤ8 turns our 

normal notions of algebra on their head. Take the solution 

of quadratic equations. A quadratic can’t have more than 

two solutions, right? Wrong! At least for ℤ8 it’s wrong. 

Take the quadratic equation x2 − 1 = 0. 

Solving, we get (x − 1)(x + 1) = 0. So far so good, 

even in ℤ8. But as soon as we try to say “hence x − 1 = 0 

or x + 1 = 0” we’ve transgressed in ℤ8 because this last 

step appeals to the cancellation law which is just not true 

in ℤ8. 

 In fact the quadratic x2 − 1 = 0 has as many as four 

solutions in ℤ8 as is shown by the following table of 

squares. 
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x 0 1 2 3 4 5 6 7 

x2 0 1 4 1 0 1 4 1 

 

  So why is the arithmetic and algebra of ℤ8 so 

different to that of ℤ7? The difference is simply due to the 

fact that 7 is prime and 8 is not. 

 

The Cancellation Law states that: 

If  xy = 0 then  x = 0 or  y = 0. 

An equivalent statement is: 

If  a  0  and  ax = ay  then  x = y. 

[Remember that ax = ay is equivalent to a(x − y) = 0.] 

 

 While the Cancellation Law holds in ordinary 

arithmetic it fails to hold in many algebraic systems. For 

example it doesn’t hold for matrices. 

 

Example 1: The Cancellation Law doesn’t hold in ℤ100 

since 10.10 = 0 in ℤ100 while 10  0 in that system. 

 

Theorem 1: If p > 1, the Cancellation Law holds in ℤp if 

and only if p is prime. 

Proof:  Suppose the modulus p is not prime. Then p = ab 

for some a, b with 0 < a, b < p. Then in ℤp, ab = 0 while 

a  0 and b  0 and so the cancellation law fails. In other 

words if the cancellation law holds in ℤp then p must be 

prime. 
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 Now suppose that p is prime and suppose that in ℤp, 

ab = 0 where a  0. Hence in ℤ a is not divisible by p. 

Since p is prime this means that a and p are coprime. 

 Hence 1 = ah + pk for some integers h, k. 

Multiplying both sides by b we get 

b = (ab)h + p(bk). In ℤp this gives b = 0. So if ab = 0 in ℤp 

either a = 0 or b = 0. 

 

 If we’re using the same modulus, m, in a piece of 

work we simply announce at the beginning that we are 

working in ℤm. But if we need to change the modulus we 

use a different notation that constantly reminds us of 

which modulus we are using at any given time. 

We say that  a is congruent to b modulo m  if a 

and b have the same remainders on division by m.  We 

write this as a  b(mod m).  In ℤm this simply means that 

a = b. In ℤ it means that m divides a − b or that a = b + 

mq for some integer q. 

 

Example 2: 27  13(mod 7) since 7 divides 27 − 13 = 14, 

or equivalently, 27 = 13 + 7.2. 

In ℤ7, 27 = 13. They are just alternative ways of writing 

6. 

 

§ 11.4. Inverses in ℤm 
 For many applications it is important to be able to 

find an inverse in ℤm where one exists. The elements that 

have inverses are called ‘units’. 
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A unit of ℤm is any element of ℤm that has an inverse 

under multiplication. 

 

Theorem 2: Any product of units is a unit. 

Proof: It’s enough to prove this for a product of two units. 

Since (b−1a−1)(ab) = 1 it is clear that ab has an inverse. 

 

 The special property of units is that it is always 

possible to cancel them in equations. 

 

Theorem 3: If a is a unit of ℤm and ax = ay then  x = y. 

Proof: If ax = ay  and  a is a unit then a−1(ax) = a−1(ay) 

and so  x = y. 

 

Theorem 4:  a  ℤm is a unit if and only if 

GCD(a, m) = 1. 

Proof: Suppose that a is a unit of  ℤm. 

Then for some  b  ℤm, ab = 1. 

In ℤ this becomes ab = 1 + mq for some q  ℤ. 

Let  d = GCD(a, m). Then, since d divides both a and m it 

follows that d divides 1. 

Suppose now that GCD(a, m) = 1. 

Then 1 = ah + mk  for some h, k  ℤ. 

In ℤm this becomes 1 = ah, so a has an inverse, namely h. 

 

 We can find inverses modulo m by working out 

the greatest common divisor by the Euclidean algorithm 

and then working backwards to express 1 in the form 

ab + mc. 
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Example 3: Find the inverse of 35 modulo 143. 

Solution: 

          4                    11                     1 

35) 143                3) 35                2) 3 

      140                     33                    2 

          3                       2                    1 

So 1 = 3 − 2 

        = 3 − (35 − 3.11) = 3.12 − 35 

        = (143 − 35.4).12 − 35 = 143.12 − 35.49. 

Hence 35(−49)  1(mod 143). So the inverse of 35 

modulo 143 is −49 = 94. 

 

Theorem 5: Let a, m be positive integers and let {an}, 

{qn}, {bn} be sequences of integers defined recursively 

for n  0 (until an = 1) by: 

a0 = m, b0 =0, 

a1 = a, b1 = 1 and, for n  2: 

qn = INT(an−2/an), 

an = an−2 − an−1qn−1, 

             bn = bn−2 − bn−1qn−1 for n  2. 

Then for all n, abn  an(mod m). 

Proof: For n = 0 this merely says that 0  m(mod m), 

which is certainly true. 

For n = 1 this says that a  a(mod m), which is also true. 

Suppose now that n  2 and suppose that: 

abn  an(mod m). 

Then abn+1 = a(bn−1 − bnqn) 

                    abn−1 − abnqn 
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                    an−1 − anqn(mod m) 

                    an+1(mod m). 

Corollary: If a, m are coprime, ultimately an = 1 and so 

bn  a−1(mod m). 

 

So by computing the sequence {bn} in parallel with 

the {an} we can find the inverse of a modulo m. We set 

our working in three columns. The first column contains 

the successive values of q. The second column contains 

the values of an and the third column contains the values 

of bn. 

 To begin with we set down the following values in 

the second and third columns. The first column remains 

blank at this stage. 

 

qn an bn 

 m 0 

 a 1 

 

These rows correspond to n = 0 and n = 1. 

 

We compute each of the remaining rows from the two 

rows above it as follows: 

 

 an−2 bn−2 

qn−1 an−1 bn−1 

INT(an−2 /an−1) an−2 − an−1qn−1 bn−2 − bn−1qn−1 
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We continue until we obtain a ‘1’  in the middle column. 

The required inverse will now appear in the third column. 

The table will have the form: 

 

qn an bn 

 m 0 

 a 1 

… … … 

 an−2 bn−2 

qn−1 an−1 bn−1 

INT(an−2 /an−1) an−2 − an−1qn−1 bn−2 − bn−1qn−1 

… … … 

 1 inverse 

 

Each item in the first column is obtained by finding the 

quotient on dividing the two most recent two entries in the 

middle column and the quotient goes in the middle 

column. 

   

   

quotient remainder  

For the third column we do the remainder calculation on 

the two most recent entries in the third column, but using 

the same quotient as before. 

   

 A B 

 a b 

q A − a.q B − b.q 
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Example 4: Find the inverse of 35 mod 143. 

Solution:  We begin with: 

qn an bn 

 143 0 

 35 1 

For the next row we find INT(143/35) = 4, 143 − 35.4 = 

3and 0 − 1.4 = −4. 

qn an bn 

 143 0 

 35 1 

4 3 − 4 

The table is completed in the same way: 

qn an bn 

 143 0 

 35 1 

4 3 − 4 

11 2 45 

1 1 −49 

 

So the inverse of 35 modulo 143 is − 49 = 94. 

 

§ 11.5. Powers in ℤm 
 Consider the geometric progression 1, x, x2, x3, .... 

for some x  ℤm. Since ℤm is finite we must get repetitions. 

And once one power is equal to an earlier one the same 

block of numbers simply repeats. 
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 For example in ℤ10, the powers of 3 are: 

1, 3, 9, 7, 1, 3, 9, 7, .... 

  The powers of 2 are 1, 2, 4, 8, 6, 2, 4, 8, 6, ...... 

 This simple fact enables us to answer questions in 

our head that would appear to require enormous amounts 

of computation. 

 

Example 5: What is the final digit in71995 ? 

Solution: There’s no need to compute the complete value 

of 71995.  In any case to do so would require more than a 

normal calculator. But computing the first few powers of 

7 modulo 10, until we get a repetition, we have: 

 

 

Since in ℤ10, 7
4 = 1 then 7 to any multiple of 4 will give 1 

in ℤ10. So we need only find the remainder on dividing 

1995 by 4. Now 1995 = 498.4 + 3, so 71995 = (74)498.73 

= 73 = 3 in ℤ10. Hence 71995 ends in a 3. 

 

The following Theorem is known as Fermat’s 

“Little” Theorem. This is to distinguish it from his 

celebrated “Last Theorem”. 

Fermat's Last Theorem states that for all integers 

n  3 there are no solutions to the equation: 

xn + yn = zn 

for non-zero integers x, y and z. 

n 0 1 2 3 4 

7n 1 7 9 3 1 
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 We all know that 32 + 42 = 52 and 52 + 122 = 132. 

There infinitely many such integer solutions to the 

equation x2 + y2 = z2. But when it comes to n = 3, or any 

larger value of n, the situation is quite different. 

 There are, of course, trivial solutions such as 0n + 

1n = 1n but no non-trivial solutions.  It was proved for n = 

3 a long time ago, and over the years for larger and larger 

values of n. But it wasn’t until the late 20th century that it 

was proved that there are no non-trivial solutions for all 

n.  

Fermat claimed to have proved this theorem 350 

years ago in a note in one of his books but claimed “the 

margin is too small to contain it”. There has been much 

controversy as to whether he really did have a complete 

proof, but as it took over 350 years for such a proof to be 

found, and since this proof required whole tracts of 

mathematics that were not developed until the late 20th 

century, the consensus seems to be that he only thought 

he had a proof. 

His “Little” Theorem, on the other hand, is one that 

he is known to have proved. There are now numerous 

proofs of this theorem – here are three of them. 

 

Theorem 6 (FERMAT): If p  is prime and  a  is a not a 

multiple of p  then  ap−1  1(mod p). 

Proof: #1: We prove by induction on a that for all a  1, 

ap  a(mod p). 

If a = 1 the result is clearly true so suppose now that it is 

true for a. Then by the Binomial Theorem: 
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(a + 1)p = ap + pap−1 + ½p(p − 1)ap−2 + ... + 1. 

Since p is prime, all the binomial coefficients, except the 

first and the last, are multiples of p so, modulo p: 

(a + 1)p  ap + 1  a + 1 (mod p) 

by the induction hypothesis. 

Hence the result holds for a + 1. To get from ap = a to ap−1 

= 1 we use the Cancellation Law. 

 

Proof #2: (For those who know a little group theory) 

Since p is prime the non-zero elements of ℤp form a group 

under multiplication. By Lagrange’s Theorem the order 

of each element of this group divides p − 1, the order of 

the group. 

Hence ap−1 = 1 for all non-zero a  ℤp. 

 

Proof #3:  Let N = (p − 1)! = 1.2.3 … (p −1). 

Clearly p doesn’t divide N and so in ℤp,  N  0. 

In the remainder of the proof we interpret everything as 

elements of ℤp. 

Multiply each of the factors of N by a. 

Hence  ap−1N = a.2a.3a. … .(p −1). 

By the cancellation law, no two of these factors are equal, 

so they must be all the non-zero elements in some order. 

Hence the right hand side of the above equation is N. 

So ap−1N = N and, since N  0 in ℤp, it follows by the 

Cancellation Law that ap−1 = 1. 
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Example 6: p = 7 

N = 1.2.3.4.5.6 

Now modulo 7, {2, 4, 6, 8, 10, 12} = {2, 4, 1, 3, 5}. Both 

sets therefore have the same product, 

26N = 2.4.6.1.3.5 = N 

 26 = 1 in ℤ7. 

Note that in this example N = 720  −1(mod 7). This holds 

for all primes p. 

 

Theorem 7: If p is prime then (p −1)!  −1(mod p). 

Proof: Now (p −1)! = 1.2.3 … (p − 1). Each one of these 

factors has an inverse in ℤp and it will cancel its inverse, 

provided that inverse is a different element of ℤp. So N is 

the product of all those elements of ℤp that are equal to 

their own inverse. 

But if  x = x−1  then x2 = 1 and so (x − 1)(x + 1) = 0. Since 

the cancellation law holds in ℤp (for prime p) we must 

have x = 1 or x = −1. The product of these is −1. 

 

§ 11.6. Euler's -Function 
We define (n) to be the number of units of ℤm. In other 

words, it is the number of integers from 1 to m that are 

coprime with m. 

 

Example 7: (10) = 4 since the units of Z10 are 1, 3, 7 and 

9. 

(21) = 12 since the units of  ℤ21 are 1, 2, 4, 5, 8, 10, 11, 

13, 16, 17, 19 and 20. 
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Theorem 8: If p is prime and  n  1, (pn) = pn−1(p − 1). 

Proof: Of the numbers from 1 to pn, the ones that are not 

coprime to pn are the multiples of  p.  There are pn−1 of 

these and so  (pn) = pn − pn−1 = pn−1(p − 1). 

Corollary: (p) = p −1. 

 

Theorem 9: If p, q are distinct primes then: 

(pmqn) = pm−1(p −1)qm−1(q −1). 

Proof: Of the numbers from 1 to pmqn the ones that are 

not coprime to pmqn are the multiples of p and the 

multiples of q. 

 Now there are pm−1qn multiples of p in this range, 

and pmqn−1 multiples of q.  But don’t forget that the 

pm−1qn−1 multiples of pq will get counted both times, and 

so by the Principle of Inclusion-Exclusion we have: 

(pmqn) = pmqn − pm−1qn − pmqn−1 + pm−1qn−1 

             = pm−1(p −1)qm−1(q −1). 

Corollary: (pq) = (p − 1)(q −1). 

 The general case is as follows.  We omit the proof. 

 

Theorem 10: (p1
n1 p2

n2 … pk
nk) 

            = p1
n1−1(p1 − 1) p2

n2−1(p2 − 1) … pk
nk−1(pk − 1). 

 

 An alternative formulation of this theorem is as 

follows.  If the distinct prime divisors of N are p1, p2, …, 

pk then (N) = 
N

(p1 − 1)...(pk − 1)
 . 
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 Leonard Euler gave the following generalisation of 

Fermat's Little Theorem. 

 

Theorem 11 (EULER): If a is coprime with n then: 

a(n)  1 (mod n). 

Proof #1: This proof is adapted from Proof #3 of Fermat’s 

Little Theorem. 

Let N be the product of all the units of ℤn. 

Clearly N  0 in ℤn. 

Multiply each of the factors of N by a. 

Hence a(n)N is the product of each of the units after being 

multiplied by  a. 

By the cancellation law, no two of these factors are equal, 

so they must be all the units in some order.  Hence  a(n)N 

= N.  Now the product of any collection of units is a unit 

so N is a unit. 

By the Cancellation Law a(n) = 1. 

 

Proof #2: However the simplest proof is by group theory.  

The elements of ℤn that are coprime with n are precisely 

the units.  They form a group, often denoted by ℤn
#, under 

multiplication.  The order (size) of this group is (n).  By 

Lagrange's Theorem the order of each element divides the 

order of the group and so if  a is one of these units, a(n) = 

1 in ℤn. 

 

Example 8: (20) = (22.5) = 21(2 − 1)50(5 −1) 

                                              = 2.4 = 8. 

(7000) = (23.53.7) = 22.52.4.6 = 2400. 
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 In computing powers modulo n, we can use Euler’s 

theorem to break down the power to a much smaller one. 

 

Example 9: Find 694803 modulo 7000. 

Solution: (7000) = 2400 so 

692400  1 and hence 

694800  1 so 694803  693  328509  6509. 

 

 If the modulus is large, even breaking down a 

power to a smaller one may still result in a large power, 

too large to compute with the computing device available.  

The trick here is to break the power up as a sum of powers 

of 2.  The number to be raised is then squared repeatedly.  

But at each stage the answer is reduced modulo the 

modulus, so that the numbers involved in the calculation 

are never bigger than the square of the modulus. 

 

Example 10: Find 694900 modulo 7000. 

Solution: As above, 694800  1(mod 7000) so 694900  

69100. 

692  4761 

694  47612  22667121  1121 

698  3641 

6916  5881 

6932  6161 

6964  3921 

Now 100 = 64 + 32 + 4 so 

69100 = 6964.6932.694 

         3921.6161.1121 
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         24157281.1121 

         281.1121 

         315001 

         1 

Hence 695000  1 

 

 

EXERCISES FOR CHAPTER 11 
 

EXERCISES 11A (Arithmetic Mod m) 

Ex 11A1: If x = 7 and y = 6, compute x3 + y3 (mod 11). 

 

Ex 11A2: 

Find the inverses of the non-zero elements of ℤ11. 

 

Ex 11A3: Which elements of ℤ15 have inverses under 

multiplication? 

 

Ex 11A4: Find the remainder on dividing 1331967 by 31. 

 

Ex 11A5: Calculate (2600).  Hence find 31000 in ℤ2600. 

 

Ex 11A6: In ℤ1271 find 10371234567. 

 

Ex 11A7: Find the remainder on dividing 111603 by 600. 

 

Ex 11A8: Find the inverse of 125 modulo 2592.  (This 

obtains the decoding number for user A in example 13.) 
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Ex 11A9:  (i) Solve the equation 143x  1(mod 300). 

(ii) Find (78200). 

 

SOLUTIONS FOR CHAPTER 11 
Ex 11A1: 9 

 

Ex 11A2: 

x 1 2 3 4 5 6 7 8 9 10 

x−1 1 6 4 3 9 2 8 7 5 10 

 

Ex 11A3: 1, 2, 4, 7, 8, 11, 13, 14. 

 

Ex 11A4: 17. 

 

Ex 11A5: (2600) = 960; 31000 = 601 

 

Ex 11A6: 872 

 

Ex 11A7:  (600) = (23.3.52) = 22.2.5.4 = 160. 

Thus 11160 = 1 in ℤ600. 

Hence 111603 = 113 = 1331 = 131. 

Thus the remainder is 131. 

 

Ex 11A8: 

           20                      1                    1                   1 

125) 2592           92) 125           33) 92           26) 33 

        250                     92                  66                  26 

            92                   33                  26                    7 etc. 
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Hence 1 = 5 − 2.2 

              = 5 − 2(7 − 5) = 3.5 − 2.7 

              = 3(26 − 3.7) − 2.7 = 3.26 − 11.7 

              = 3.26 − 11(33 − 26) = 14.26 − 11.33 

              = 14(92 − 33.2) − 11.33 = 14.92 − 39.33 

              = 14.92 − 39(125 − 92) = 53.92 − 39.125 

              = 53(2592 − 125.20) − 39.125 

              = 53.2592 − 1099.125. 

Hence 1  (−1099).125 (mod 2592). 

The inverse of 125 modulo 2592 is therefore: 

− 1099  1493. 

Ex 11A9: 

300 = 143.2 + 14 

143 = 14.10 + 3 

  14 = 3.4 + 2 

    3 = 2.1 + 1 

 1 = 3 − 2 

       = 3 − (14 − 3.4) 

       = 3.5 − 14 

       = (143 − 14.10).5 − 14 

       = 143.5 − 14.51 

       = 143.5 − (300 − 2.143).51 

       = 143.107 − 300.51 

        143.107 (mod 300). 

 x  107(mod 300). 

 

(ii)  (78200) = (23.52.17.23) = 22.5.4.16.22 = 28160. 
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