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1. INTEGERS AND 

DIVISIBILITY 
 

§1.1. The System of Integers 
 Number Theory is basically about the counting 

numbers 1, 2, 3, ... though we soon feel the need to 

include zero and the negative integers.  So the system 

that we are studying in these notes is the system of 

integers: … , −3, −2, −1, 0, 1, 2, 3, … 

 

We denote the set of 

integers by ℤ (from the 

German word ‘Zahlen’ 

which means ‘numbers’). 

Since these are the only 

numbers we’ll be 

considering in this chapter 

we’ll often use the more 

informal word ‘number’ 

instead of ‘whole number’ 

or ‘integer’. 

 

The system ℤ has two basic operations of addition 

and multiplication and these operations satisfy the 

following properties: 
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(1) (Closure Law for Addition): 

For all a, b  ℤ, a + b  ℤ. 

 

(2) (Associative Law for Addition): 

For all a, b, c  ℤ, (a + b) + c = a + (b + c). 

 

(3) (Commutative Law for Addition): 

For all a, b  ℤ, a + b = b + a. 

 

(4) (Identity for Addition): There exists 0  ℤ such that 

for all a  ℤ, 0 + a = a. 

 

(5) (Inverses under Addition): 

For all a  ℤ there exists −a  ℤ such that a + (−a) = 0. 

 

(6) (Closure Law for Multiplication): 

For all a, b  ℤ, ab  ℤ. 

 

(7) (Associative Law for Multiplication): 

For all a, b, c  ℤ, (ab)c = a(bc). 

 

(8) (Commutative Law for Multiplication): 

For all a, b  ℤ, ab = ba. 

 

(9) (Identity for Multiplication): 

There exists 1  ℤ such that 1  0 and for all a  ℤ, 

1a = a. 
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 The properties for multiplication mirror those for 

addition, except that ℤ doesn’t have inverses under 

multiplication. Although there exists a number b such 

that 2b = 1, it’s not an integer. 

 

 Tying the additive structure to the multiplicative 

structure we have the following property. 

 

(10) (Distributive Law): 

For all a, b, c  ℤ, a(b + c) = ab + ac. 

 

 In the system of real numbers we can cancel by a 

non-zero number. That is, if ab = ac and 

a  0 then we can multiply both sides by a−1 to conclude 

that b = c. In the system ℤ we don’t have inverses a−1, 

but cancellation is still valid. 

 

(11) (Cancellation Law): 

For all a, b,  ℤ, ab = 0 implies that a = 0 or b = 0. 

 

 A restatement of the cancellation law is: 

If ab = ac and a  0 then b = c, since ab = ac is 

equivalent to a(b − c) = 0. 

 

Any system, with operations of addition and 

multiplication, that satisfies all these 11 properties is 

called an integral domain. We say that these are the 

axioms for an integral domain. There are other integral 
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domains that you’ve already met, such as the system of 

polynomials in one variable with real coefficients. 

 

 An important subset of the integers is the set of 

natural numbers, ℕ consisting of the numbers: 

0, 1, 2, 3, …. 

[Some number-theorists exclude zero and start with 1.] 

This is closed under addition and multiplication and 

contains the additive and multiplicative identities. But it 

doesn’t have inverses, either under addition or 

multiplication. 

 

In terms of the natural numbers we can define an order 

relation on ℤ, with m  n defined to mean that n = m + k 

for k  ℕ. We define , < and > in the usual way. 

 

A set with an ordering  is said to be well-

ordered if every non-empty subset has a least. The set ℝ 

of real numbers is not well-ordered since there is no 

smallest positive real number. However (S), the set all 

subsets is well-ordered by the subset relation (just write 

‘’ for subset instead of ‘’). The least subset in any 

non-empty set of subsets is clearly their intersection. An 

important property of the set of natural numbers is that it 

is well-ordered by . 
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Theorem 1 (Well-Ordering Principle): Every non-

empty subset of the natural numbers has a least. 

Proof: It’s tempting to say that it’s obvious. Or, like 

many ‘obvious things in mathematics’ we could take it 

as an axiom. But it is possible to prove it, but to do so 

would require a formal definition of natural number, 

which takes us away from Number Theory. I prove the 

well-ordering principle in my notes on Sets. 

 

 An important consequence of the Well-Ordering 

Principle is the Principle of Mathematical Induction. 

 

Theorem 1 (PRINCIPLE OF INDUCTION): 

Suppose S(n) is a statement depending on some 

parameter n  ℕ. 

If S(0) is true and if, for all n, S(n) implies S(n + 1), then 

S(n) is true for all n. 

Proof: Let F = {n  ℕ | S(n) is false}. Suppose that F is 

non-empty. It therefore has a least. 

Let m  F be the least element of F. Since S(0) is true, m 

> 0 and so m − 1  ℕ. 

Since m − 1 < m we conclude that m − 1  F. 

But this means that S(m − 1) must be true. 

By our assumption this implies that S(m) is true which 

means that m  F, a contradiction. 

So this F is empty and so S(n) must be true for all n  ℕ. 
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Example 1: Prove that 
r=1

n
 r3 = 

1

4
 n2(n + 1)2.for all n  ℕ. 

Solution: For n = 1, LHS = 1 = RHS. 

Suppose  
r=1

n
 r3 = 

1

4
 n2(n + 1)2. 

Then 
r=1

n+1
 r3 = 

1

4
 n2(n + 1)2 + (n + 1)3 

                          = 
1

4
 (n + 1)2 [n2 + 4(n + 1)] 

                 = 
1

4
 (n + 1)2 [n2 + 4n + 4] 

                 = 
1

4
 (n + 1)2 (n + 2)2. 

So the result is true for n + 1. Hence by induction it 

holds for all n. 

 

 However it’s just as easy to use the Principle of 

Well-Ordering itself, using a technique called the 

minimal counterexample technique. To prove 

something is true for all n we suppose that there’s a 

counter-example. Then the set of counter-examples will 

be non-empty and so there must be a minimal counter-

example. Hence the theorem must be true for everything 

smaller. But then we proceed to prove that the theorem 

is true for the minimal counter-example itself, which is 

clearly a contradiction. Hence there can be no counter-
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example at all – the theorem is always true. Here is how 

we can prove Example 1 by using the minimal counter-

example technique. 

 

Example 1 revisited: Prove that 
r=1

n
 r3 = 

1

4
 n2(n + 1)2 for 

all n  ℕ. 

Solution: Suppose the theorem is false and let N be a 

minimal counter-example. 

For n = 1, LHS = 1 = RHS, so N > 1. 

Then 
r=1

N−1
 r3 = 

1

4
 (N − 1)2 N2. 

Then 
r=1

N
 r3 = 

1

4
 (N − 1)2 N2 + N3 

                          = 
1

4
 N2 [(N − 1)2 + 4N] 

                 = 
1

4
 N2 [N2 − 2N + 1 + 4N] 

                 = 
1

4
 N2 (N + 1)2. 

So the result is true for N, contradicting the fact that N is 

a minimal counter-example, 

Hence the statement holds for all n. 

 

 It’s actually no more work. But there are many 

situations where we can’t go from n to n + 1 and the 
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Principle of Induction fails. Often one gets around this 

by developing what’s called the Strong Principle of 

Induction. But this isn’t necessary because in those 

situations we can still use the minimal counter-example 

technique. 

 

We are about to introduce the notions of prime 

and composite numbers. Integers, n, with 

|n| > 1 are either prime (can’t be factorised into factors 

with smaller absolute value), or composite (not prime). 

In the next example we allow the notion of a prime 

being the ‘product’ of one prime. 

 

Theorem 2: Prove every integer n > 1, n is a product of 

prime numbers. 

Solution:  

[Suppose the theorem is false.] 

Suppose N > 0 is a minimal counter-example. 

If N is prime it is the ‘product’ of 1 prime so N must be 

composite. 

Then N = ab for some numbers a, b with 1 < a, b < N. 

Now a, b are products of primes (they are smaller than 

the minimal counter-example). 

Hence N = ab is itself a product of primes, contradicting 

the fact that it is a counter-example. 

[Hence there is no counter-example and the theorem is 

true for all n.] 

Corollary: Every integer n with |n| > 1 is a product of 

primes. 
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Proof: This follows from the fact that p is prime if and 

only if −p is prime. 

 

 In practice we’d leave out the first and last lines of 

the theorem. They’re included here to for emphasis. As I 

said, most people would use the so-called Strong 

Principle of Induction. However there are many 

branches of mathematics where even the Strong 

Principle is not strong enough, while the minimal 

counter-example technique still works! 

 

§1.2. Divisibility 
 A fundamental property of the integers is the fact 

that we can divide one number by another, getting a 

quotient and a remainder. Here, again, we appeal to the 

Well-Ordering Principle. 

 

If m, n are integers and m > 0, the remainder on 

dividing n by m is the smallest element of the set {n − 

mq | q  ℤ}  ℕ and the quotient is the corresponding 

q. 

This set is non-empty because n − mq  0 for q = −|n| 

(Prove this as an exercise.) 

 

Example 2: 

Let n = 17 and m = 3. 

{n − mq | q  ℤ} = {…, 23, 20, 17, 14, 11, 8, 5, 2, −1, 

−4, −7, …}. 

{n − mq | q  ℤ}  ℕ = {…, 23, 20, 17, 14, 11, 8, 5, 2}. 
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The least element of this set is 2, so this is the 

remainder, and since 2 = 17 − 3.5, the quotient is 5. 

 

Let n = −17 and m = 5. 

{n − mq | q  ℤ} = {…, − 27, − 22, −17, −12, −7, −2, 3, 

8, 11,   …}. 

{n − mq | q  ℤ}  ℕ = {3, 8, 11,   …}. 

The least element of this set is 3, so this is the 

remainder, and since 3 = −17 − 5.(−4), the quotient is 

−4. 

 

Theorem 3 (DIVISION ALGORITHM): 

If m, n are integers, where m > 0, then n = mq + r for 

some r with 0  r < m. 

Proof: Let S = {n − mq | q  ℤ} ℕ and let  r  be the 

remainder on dividing n by m, that is the smallest 

element of S. 

Then n = mq + r, and r  0, by the definition of 

remainder. 

It remains to show that r < m. 

Suppose r  m. Then 0  r − m = n − m(q + 1)  S, 

contradicting the fact that  r  is the least element of S. 

 

NOTES: (1) It is always called the Division Algorithm 

but strictly speaking an algorithm is a computational 

process. I suppose it is called this because it justifies the 

algorithm of long division that we all learnt in primary 

school. 
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(2) Usually the Division Algorithm includes the case m 

< 0, replacing r < m by r < |m|. But rarely do we have 

occasion to divide by a negative number in Number 

Theory and it strikes me that to include that case is 

unnecessary. I have left it as an exercise. 

(3) When you are called on to find the quotient and 

remainder in practice don’t attempt to set up the set {n − 

mq | q  ℤ} ℕ. Continue to use long division as you 

always have. 

 

If the remainder is zero, that is if m = nq for some 

q  ℤ, we say that m divides n. We write this as m | n. 

Equivalently we can say that n is a multiple of m. 

Clearly 1 | n for all n And, surprisingly, 0 | 0 is 

also true! You’ve always learnt that you can’t divide by 

0 but it is true that 0 divides 0, because 0 = 0q for all 

integers q. So 0 | 0 is true even though 0/ 0 is undefined. 

Make sure you don’t confuse m | n with m/n. The symbol 

m | n is a statement. It can only be true or false. But m/n 

(equivalently m  n) is a number. 

 

We denote the set of divisors of n by D(n) and the set of 

multiples of n by nℤ. 
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Example 3: 

D(12) = {1, 2, 3, 4, 6, 12}, 12ℤ = {0, 12, 24, 

36, …}. 

D(1) = {1}, 1ℤ = ℤ. 

D(0) = ℤ (because n = n.0 for all n). 

0ℤ = {0}. 

D(n) is finite for all n, except where n = 0. 

nℤ is infinite for all n, except where n = 0. 

 

The set of common divisors of m, n is simply D(m)  

D(n). Associated with this is mℤ + nℤ which is the set of 

all numbers of the form mh + nk where h, k ℤ. 

 

Theorem 4: For all integers m, n we have mℤ + nℤ = dℤ 

for some d ℤ. 

Proof: Let  d be the smallest positive element of mℤ + 

nℤ. (Well-ordering comes in here.) 

Then d = mh + nk for some h, k  ℤ. 

Clearly any multiple of d will belong to mℤ + nℤ and so 

dℤ  mℤ + nℤ. 

Now let k = ma + nb  mℤ + nℤ.  Let r be the 

remainder on dividing k by d. 

That is, k = ma + nb = dq + r for some q  ℤ and 0  r < 

d. 

Now r = ma + nb − (mh + nk)q = m(a −hq) + n(b − kq)  

mℤ + nℤ. 

But d is the smallest positive element of mℤ + nℤ, so it 

must be that r = 0. 
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Hence k = dq  dℤ and so mℤ + nℤ  dℤ. 

 

 Suppose m, n are non-zero integers. Then D(m)  

D(n) is finite. An element of this set of largest absolute 

value is called a greatest common divisor of m, n. 

 

Example 4: D(15) = {1, 3, 5,  15} and D(51) = 

{1, 3, 17, 51} so 

D(15)  D(51) = {1, 3}. The elements with largest 

absolute value are 3, so these are both greatest common 

divisors of 15 and 51. 

 

Theorem 5: If mℤ + nℤ = dℤ then d is a greatest 

common divisor. 

Proof: Let d = mh + nk.  If e is a common divisor of m, 

n then e | d and so d is a greatest common divisor. 

Corollary: A GCD of m, n can be expressed in the form 

mh + nk. 

 

 Clearly every pair of non-zero integers has exactly 

2 greatest common divisors, d.  However, when we 

refer to the greatest common divisor we mean the 

positive one. We denote this by GCD(m, n). By 

Theorem 4, GCD(m, n) = mh + nk for some h, k  ℤ. 

 

Example 5: GCD(91, 130) = 13, GCD(56, 27) = 1. 

 

 Two non-zero numbers m, n are defined to be 

coprime if GCD(m, n) = 1. Loosely speaking we might 
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say that they have ‘no common factors’, but we’d really 

mean is that the only common factors are 1. 

 

 If we divide two numbers by their GCD the 

quotients will be coprime because we’d have removed 

all common factors. 

 

Theorem 6: If d = GCD(a, b) then a/d and b/d are 

coprime. 

Proof: Let a = a0d and b = b0d and let e = GCD(a0, b0). 

Let a0 = a1e and b0 = b1e. 

Then a = a1ed and b = b1ed and so ed is a common 

divisor of a, b. 

Since d is the greatest common divisor it must be that e 

= 1. 

 

§1.3. The Euclidean Algorithm 
 The most obvious way of finding the greatest 

common divisor of two 

numbers is to factorise each of 

them. This, however, is highly 

inefficient. Factorising numbers 

is extremely time consuming, 

even with the help of a 

computer, unless the numbers 

are small. But long before 

computers the ancient Greeks 

had devised a very efficient 

method of finding GCDs. 
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The Euclidean Algorithm: 

To find the GCD of two positive numbers: 

(1) Divide the smaller into the larger getting a quotient 

and remainder. 

(2) Replace the larger number by this remainder. 

(3) While the smaller number is positive go to step (1) 

and continue. 

(4) When the smaller number becomes zero, the larger is 

the required GCD. 

 

Example 6: Find GCD(1131, 2977). 

Solution: 2977 = 1131.2 + 715 

                1131 = 715.1 + 416 

                  715 = 416.1 + 299 

                  416 = 299.1 + 117 

                  299 = 117.2 + 65 

                  117 = 65.1 + 52 

                    65 = 52.1 + 13 

                    52 = 13.4 + 0 

The last non-zero remainder is 13 and so GCD(1131, 

2977). 

 

 By the Corollary to Theorem 4 we can express 13 

in the form 1131h + 2977k for some numbers h, k. 

 

Example 7: Find integers h, k such that 13 = 1131h + 

2977k. 

Solution: We work back through the above calculations. 

13 = 65 − 52 
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     = 65 − (117 − 65) = 65.2 − 117 

     = (299 − 117.2).2 − 117 = 299.2 − 117.5 

 =  299.2 − (416 − 299).5 = 299.7 − 416.5 

 = (715 − 416).7 − 416.5 = 715.7 − 416.12 

 = 715.7 − (1131 − 715).12 = 715.19 − 1131.12 

 = (2977 − 1131.2).19 − 1131.12 = 2977.19 − 1131.50 

So h = −50, k = 19 is one solution. 

You must resist the temptation to simplify, except as a 

check. Keep the two current numbers intact at all times.  

However at the end you should check that the expression 

simplifies to the GCD. 

 

Theorem 7: Euclid’s algorithm finds the GCD of two 

positive integers. 

Proof: Let m, n be positive integers. Suppose m = nq + r 

where 0  r < m. 

Then D(m)  D(n) = D(n)  D(r) since any k that 

divides both m, n will divide r and any k that divides 

both n, r divides m. At each stage the set of common 

divisors of the two numbers we are dealing with is the 

original D(m)  D(n). Suppose at the final stage, when r 

= 0, the other number is d. Then D(m)  D(n) = D(d)  

D(0) = D(d) since D(0) = ℤ. [Remember that every 

integer is a multiple of 0.] So the greatest common 

divisor of m and n is the largest divisor of d, which is d  

itself. 
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Theorem 8: If m | ab and a, m are coprime then m | b. 

Proof: By Theorem 4, 1 = ah + mk for some h, k  ℤ 

and so b = abh + mkb. 

Since m | ab, m | b. 

 

§1.4. The One-Way Euclidean Algorithm 

The reverse algorithm is unpleasant to perform 

and is error prone, yet it’s important for a number of 

applications, such as finding inverses modulo m. The 

following tabular version involves about half the 

arithmetic and about a quarter of the writing as the usual 

method and proceeds in a single direction by computing 

the ingredients for the inverse as we go instead of having 

to work backwards. We’ll prove that this works in the 

next chapter. 

 

To find the GCD of a, b and to express it in the form ah 

+ bk: 

Generate three recurrence sequences: 





A0 = a   B0 = 0

A1 = b   B1 = 1

qn+1 = INT(An/An+1)

 Bn+2 = Bn − Bn+1qn+1

An+2 =  An − An+1qn+1

 . 

 

We perform the calculation in a table with three 

columns. 
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A Q B 

a  0 

b  1 

… … … 

A ……. B 

A q = 

INT(A/A) 

B 

A − 

Aq 

 B − 

qB 

… … … 

GCD q k 

0     STOP  

 

The pattern for each of the outside columns is “up two 

minus down times across” 

 

The first column contains the successive remainders and 

the last non-zero remainder will be the GCD. In the third 

column, opposite the GCD will be a suitable value of k. 

Having found k the corresponding value of h is simply h 

= 
GCD − bk

a
 . 
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Examples 5 and 6 revisited: Find GCD(2977,1131) and 

express it in the form 2977h + 1131k. 

Solution: A Q B 

 2977  0 

 1131 2 1 

 715 1 −2 

 416 1 3 

 299 1 −5 

 117 2 8 

 65 1 −21 

 52 1 29 

 13 4 −50 

 0   

Hence GCD(2977,1131) = 13, k = −50 and h = 

13 − 1131(−50)

2977
  = 

56563

2977
  = 19. 

So 13 = 2977.19 − 1131.50. 

 

Example 7: Find the inverse of 30 modulo 143. This 

means ‘find b such that 30b = 1 plus a multiple of 143. 

A Q B 

143  0 

30 4 1 

23 1 −4 

7 3 5 

2 3 −19 

1  62 

0   
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The fact that we get 1 as the last non-zero entry in the 

first column ensures that an inverse exists.  The inverse 

is the entry in the B column opposite to this 1. 

Hence 30−1  62(mod 143). This means that 30.62 = 1 

plus a multiple of 143, as you can check. 

 

§1.5. Prime Numbers 
 We define a number to be prime if it has exactly 2 

positive divisors. Note that this rules out 1 from being 

prime. The usual 

definition of ‘prime’ 

says that ‘p is prime if 

p   1 and the only 

divisors of  p are  1 

and  p’, which is 

equivalent. 

 Why don’t we allow 1 or −1 to be called prime? 

There is no logical reason why they couldn’t be 

included. It’s just a matter of convenience. The numbers 

 1 have special properties and if we included them as 

primes we’d repeatedly have to often say ‘prime number 

except   1’ in our theorems. We call  1 units because 

they are the integers that have inverses under 

multiplication within ℤ. 

 

Example 8: The prime numbers are 2, 3, 5, 7, 11, 

13, 17, 19, 23, 29, 31, … 
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 Numbers that aren’t prime (other than the three 

special numbers −1, 0, and 1) are called composite. 

There are thus four basic sets of numbers according to 

this classification. 

 

0 units prime 

numbers 

composite 

numbers 

Theorem 9: If p is prime and p | ab then p | a or p | b. 

Proof: Suppose that p is prime and suppose that p does 

not divide a. Then GCD(a, p) = 1 and so, by Theorem 7, 

p | b. 

 

It’s a very useful fact that every number can be 

factorised uniquely into primes. Well, that is not strictly 

true. Zero can’t be factorised into primes. Let’s keep to 

numbers whose absolute value is bigger than 1, that is, 

numbers that are not 0 or 1. Is it true that every such 

number can be factorised uniquely into primes? That 

depends on our definition of ‘uniquely’. 

 

Example 9: There are 4 factorisations of 6 into primes: 

6 = 2.3 = 3.2 = (−2)(−3) = (−3)(−2). However we 

consider all four factorisations to be the one 

factorisation. Note that if we allowed 1 and −1 to be 

primes we would have infinitely many prime 

factorisations of 6. For example, 6 = 

(−2).3.(−1).1.1.1.(−1)(−1). 
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 The following theorem describes exactly what we 

mean by ‘unique’ in the context of unique factorisation. 

 

Theorem 10 (FUNDAMENTAL THEOREM OF 

ARITHMETIC): 

If |n| > 1 then n = p1p2 … ph for some h and some primes 

p1, p2, … , ph. 

Moreover if n = p1p2 … ph = q1q2 … qk then h = k and, 

after suitable rearrangement of the factors, 

pi = qi for each i. 

Proof: We proved in Theorem 2. 

We prove the second part by induction on the number of 

prime factors. 

Suppose that p1p2 … ph = q1q2 … qk where the pi and qi 

are primes. 

Then p1 divides q1q2 … qk and so p1 divides qj for some 

j, by Theorem 9. 

Since qj is prime p1 =  qj. 

Renumbering the qi’s so that qj becomes q1 and dividing 

by p1 we get p2 … ph = q2 … qk. 

By induction h − 1 = k − 1 and for each i  2, pi = qj for 

some j  2. 

 

 §1.6. Generating Prime Numbers 
 There’s no known formula for the n’th prime 

number. At least there are formulae but they’re so 

impractical to use that they’re worse than no formula at 

all. There is virtually no improvement on the simple-

minded approach of testing all factors. 
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One obvious improvement is the fact that in testing n we 

only need to test for factors up to n. 

 

Theorem 11: If p has no factors n for 2  n  p then p 

is prime. 

Proof: If p = ab where 1 < a, b < p then one of a, b must 

be less than or equal to p (If they were both bigger than 

p then ab would be bigger than p.) 

 

 Another improvement is that if we’re generating 

all primes, by the time we got to p we would have a list 

of all primes less than p. So we never need to test for 

divisibility by numbers that are composite. If we’re just 

testing a single number p, and don’t have a list of primes 

less than p then at least we should not be testing 

divisibility by numbers that are clearly composite, such 

as even numbers and multiples of 3 or 5. 

 

It’s useful to be able to recognise multiples of 2, 3 and 5. 

• Multiples of 2 are those numbers that end in 0, 

2, 4, 6 or 8. 

• Multiples of 5 are those numbers that end in 0 or 

5. 

• Multiples of 3 are those numbers where the sum 

of the digits is a multiple of 3. 
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Example 10: Is 3197 prime? 

Solution: 3197  = 56.542… so we only need to test by 

numbers up to 56. But 56, 55 and 54 are clearly 

composite so in fact we need only go up to 53. 

3197 is clearly not divisible by 2, 3 or 5. So, using our 

calculator we test for divisibility by 7, 11, 13, 17, 19, 23, 

29, 31, 37, 41, 43, 47, 53, and we discover that 23 is a 

factor and that 3197 = 23.139. 

 

Example 11: Is 5113 prime? 

Solution: 5113  = 71.50 … so we only need to test by 

numbers up to 71. 

5113 is clearly not divisible by 2, 3 or 5. So, using our 

calculator we test for 7, 11, 13, 17, 19, 23, 29, 31, 37, 

41, 43, 47, 53, 59, 61, 67, 71. Since 5113 is not divisible 

by any of these it must be prime. 

 

 An ancient method for generating primes is 

known as the Sieve of Eratosthenes. It’s particularly 

suitable if you happen to live in an ancient civilization 

without calculators. You write down a list of all 

numbers, in order from 2 to some large number. You 

circle the ‘2’ and then cross out every 2nd number after 

that. 

 At each stage you circle the first number that 

hasn’t been crossed out. That will be a prime number. If 

this is p then you cross out every pth number after that. 

Continue until every number on your clay tablet has 
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been circled or crossed out. The circled numbers will be 

prime and the crossed out ones will be composite. 

 

Example 12: Use the sieve of Eratosthenes to find all 

the primes up to 100. 

Solution: 

 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

 

 Notice that as numbers get larger, primes become 

rarer. In successive groups of 10 the percentages of 

primes are 40%, 40%, 20%, 20%, 30%, 20%, 20%, 30%, 

20%, 10%, giving 25% over the first 100. The 

percentage of primes up to 1000 drops to 16.8%. In the 

first 10,000 it’s only about 12% and in the first million 

it’s less than 8%. Could it be that primes become so rare 

that they finish altogether? Is there in fact a largest 

prime? 

 Of course there are infinitely many numbers 

altogether, but even if there were only finitely many 

primes they could still generate infinitely many 
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numbers. After all there are infinitely many powers of 2 

and that uses just one prime. This question was asked, 

and answered, a long time ago by Euclid. There are, 

indeed, infinitely many primes, though they become 

gradually rarer as the numbers get larger. We shall prove 

this in chapter 5. 
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EXERCISES FOR CHAPTER 1 

 

Exercise 1: Factorise 2926 into prime factors. 

 

Exercise 2: Factorise 713 into primes. 

 

Exercise 3: Show that 659 is prime. 

 

Exercise 4: Find the first prime after 1000. 

 

Exercise 5: Find the GCD of 11111 and 3403 and 

express it in the form 11111h + 3403k. 

 

Exercise 6: Find the GCD of 10101 and 5777 and 

express it in the form 10101h + 5777k. 

 

 

SOLUTIONS FOR CHAPTER 1 

Exercise 1: 2926 = 2.1463. 

We now try dividing 1463 by 3, 5, 7, 11, …and discover 

that it is exactly divisible by 7. 

So 2926 = 2.7.209 = 2.7.11.19. 

 

Exercise 2: We try dividing by the primes 3, 5, 7, 11, 

…and eventually discover that 

713 = 23.31. 

 

Exercise 3: 659 = 25.6… so we only need to check for 

divisibility by primes up to 23. 
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Since none of these primes divide 659 we can conclude 

that 659 is prime. 

 

Exercise 4: 1000 = 31.6 so we will only need to check 

for prime divisors up to 31 (unless it turned out that 

there are no primes between 1000 and 332 = 1089). 

1001 = 7.143 

1003 = 17.59 

1007 = 19.53 

1009 is prime. 

 

Exercise 5:   

                  3                  3                 1                    3 

3403)11111     902)3403      697)902         205)697        

         10209            2706              697                 615 

            902               697              205                   82            

 

         2                2 

82)205        41)82 

     164              82 

        41               0 

The last non-zero remainder is 41.  Hence the GCD of 

11111 and 3403 is 41. 

41 = 205 − 822 

     = 205 − (697 − 2053) 2 = 2057 − 6972 

     = (902 − 697) 7 − 6972 = 9027 − 6979 

     = 9027 − (3403 − 9023) 9 = 90234 − 34039 

     = (11111 − 34033) 34 − 34039 

     = 1111134 − 3403111 
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Using the One-Way Algorithm instead: 

(Remember for the outside columns the pattern is UP 2 

MINUS DOWN TIMES ACROSS. 

 

A Q B 

11111  0 

3403 3 1 

902 3 −3 

697 1 10 

205 3 −13 

82 2 49 

41 2 −111 

0   

 

So the GCD = 41 = 11111h − 3403*111. 

Hence h = 34, so 41 = 1111134 − 3403111. 

 

Exercise 6: 

A Q B 

10101  0 

5777 1 1 

4324 1 −1 

1453 2 2 

1418 1 −5 

35 40 7 

18 1 −285 

17 1 292 

1 17 −577 
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Clearly the last non-zero remainder is 1. 

So GCD = 1 = 10101h − 5777*577 so h = 350. 


